
BIL342 Experiment IV

Hacettepe University
Department of Computer Science and Engineering

BIL342 Programming Laboratory
Experiment IV

Subject: Concurrent and Multithreaded
Programming with Linux

Advisors: Prof. Dr. Ali SAATÇİ

R.A. Kerem ERZURUMLU

Submission Date: 26/04/2002

Deadline: 10/05/2002

Programming Language: ANSI C

AIM
The aim of this experiment is to give students the ability to cope with the basic concepts of
concurrent multithreaded programming on Linux. Within this context you are asked to write a C
program with several threads which will manipulate a sample account data file concurrently.

PROBLEM DESCRIPTION

In this experiment, you will simulate operations on bank accounts. Your program should get the
accounts data from accounts data file. Atomic groups of operations (transactions) are to be
applied on the accounts. Transactions will be read from transaction data file. The sample account
data file is shown in Figure-1.

Cost ID:Costumer Name:Account1:Account2

1:Kerem ERZURUMLU:1000:-250

2:Zerrin Ünal::200
Figure-1. Sample account data file

Each row of the account data file contains client information. Each client can have at most two
accounts. The fields of a row are the first and second account’s balances. These values can be
less than zero.

In the transaction data file each row represent a transaction. A sample transaction data file is
shown in Figure-2.

BIL342 Experiment IV

tr1 1:1 1:2 50
tr2 2:2 10
tr3 2:1 20
tr1 1:2 2:2 100
tr1 2:2 2:1 50
tr2 2:2 20
tr1 1:2 1:1 100
tr3 1:1 20
tr2 1:1 50
tr3 1:1 5
tr2 1:1 20
tr2 2:2 20

Figure-2. Sample transaction data file

In each row the first field represents the transaction type. According to this field, other fields gain different
meanings. There are three types of transaction :

1. tr1 : Money transfer between two accounts. The line format for this type of transactions is as follows:
 tr1 c1:a1 c2:a2 Q

where Q represents the quantity of money to be deducted from the account a1 of the client c1 and added
to the account a2 of the client c2. In a formal representation this line can be defined as:

Transaction begin

acc1 ← read (c1:a1)

acc2 ← read (c2:a2)
acc1 := acc1 – Q
acc2 := acc2 + Q

acc1 → write (c1:a1)

acc2 → write (c2:a2)
Transaction end

In Figure-2, the line “tr1 1:1 1:2 50” means: deduct 50 from the account 1 of the client 1 and and
add it to the account 2 of the same client. At the end of this transaction, the balance of the first account
will be normally 950 and the balance of the second -200.

2. tr2 : This transaction represents the deduction of a cost from an account. The line format for this type
of transactions is as follows:
tr2 c1:a1 Q

where Q represents the quantity of money to be deducted from the account a1 of the client c1. In a formal
representation this line can be defined as:

Transaction begin

acc1 ← read (c1:a1)
acc1 := acc1 – Q

acc1 → write (c1:a1)
Transaction end

In Figure 2, the second line “tr2 2:2 10” means the deduction of 10 from account 2 of the client 2. At
the end of this transaction, the balance of account 2 will be 1190.

3. tr3 : This transaction represents the increase of an account by an interest rate. The line format for
this type of transactions is as follows:
tr3 c1:a1 Q

where Q reperesent an interest rate which determines the amount of increase of the account a1 of the
client c1. In a formal representation this line can be defined as:

BIL342 Experiment IV

Transaction begin

acc1 ← read (c1:a1)
acc1 := acc1 + acc1 * Q / 100

acc1 → write (c1:a1)
Transaction end

In Figure 2, the third line “tr3 2:1 20” means the increase of 20 percent of the account 1 of the client
2. At the end of this transaction, the balance of the account will be 900.

Your program should include 4 threads. As there are 3 types of transactions there will be 3 different threads
executing a particular type of transaction. These threads will get transactions from their own transaction
queues and will execute them on the account matrix concurrently. The fourth thread will read the
transactions file row by row and append each row to the appropiate transaction buffer (Figure-3).

To access the account matrix, your threads should, in the first place be programmed without any precaution
(without inter-thread synchronization) while respecting the synchronization when accessing the transaction
queues defined as pipes or fifo’s.

Secondly, you are asked to program your threads in a fully synchronised manner using mutex or semaphore
objects and to compare the results obtained in the two cases. (The use of mutex is the preferred way,
because they are primarily designed for thread synchronization. The semaphores are generally used for
process synchronization.)

Figure-3. The execution schema of threads

USER INTERFACE
Your program will get two parameters from command line. The parameters will be the filenames of the
account data file and the transaction data file respectively.

Every time a thread completes a transaction it should display a message on the screen. This message
should include all the necessary information about the identity of the thread and the completed transaction.

When all the transactions within the transaction data file are completed, your program should display the
final account matrix and you should check the result.

BIL342 Experiment IV
NOTES

1. Soft copy of this paper and other usefull documents is in
ftp://ftp.cs.hacettepe.edu.tr/pub/dersler/bil342/2002/4 . Also there are some examples for
thread and mutex programming.

2. You are asked to give your Makefile with your program.

3. Describe your communication flow-chart with detail.

4. You are asked to follow announcements made to “bil342 discussion list”. If you are not
subscribed yet, please subscribe to it by sending an e-mail to:
 majordomo@cs.hacettepe.edu.tr

with a message body of

“subscribe bil342”.

5. Your report and program must be submitted at the same time.

6. Your report must include your source codes.

7. Reports written with MS-Word will not be accepted. Try HTML or plain text file.

8. Your works and reports will be posted with a floppy disc.

9. Office hours will be held on Friday morning’s. You can also send e-mails to
kerem@linux.org.tr for your additional questions.

Good Luck

	AIM
	PROBLEM DESCRIPTION
	NOTES

