
BIL235 Experiment V 

Hacettepe University 
Department of Computer Science and Engineering 

 
 

BIL235 Programming Laboratory 
Experiment 5 

 

 

Subject: Writing UNIX Shell Scripts 

Advisors: Prof. Dr. Ali SAATÇİ 

R.A. Kerem ERZURUMLU  

Submission Date: 11/12/2001 

Deadline: 02/01/2002 

Programming Language: Bourne Again Shell (bash), 

ANSI C 

 

 
 
AIM 

The aim of this experiment is to get students familiar with both the session and the programming 
environment of the Unix (Linux) Operating System. 

Unix and its variants have become the de-facto (i.e., not in writing but by common consent) 
industrial standard for multitasking server systems. In recent times, flavors of Unix (Linux) have 
been ported to machines with limited hardware, such as PC’s (Personal Computers). A working 
knowledge of Unix will probably be the best advantage of a computer engineer in the future. 

 

 
BACKGROUND 

With Unix, users can access the system via a terminal. After the autentication phase (login) a 
special program called “shell” runs for each user outputting a “prompt” (normally a $ sign) on the 
screen.  A shell can be described as a layer between the user and Unix itself. It is a command line 
interpreter through which a user can execute ready made programs called shell commands such as 
ls, ps, cp, mv, cat etc.  A shell has also programming capabilities like loops and 
conditional executions. It then gives users the possibility to write “scripts” to define a specific job 
as a whole. A script is a collection of commands (or executable programs) along with loops and 
conditions. It can be considered as a program where the statements (instructions) are the 
commands. A shell script is stored in a file with a given name. It is executed every time this file 
name is stated. 

The most common shells for Unix are sh (Bourne Shell) and bash (Bourne Again 
Shell). In this experiment, you have to use bash. For its usage, please refere to the 
documents defined in the References. 



BIL235 Experiment V 
OBJECT 

In this experiment you are asked to write a shell script executing 3 different tasks as a whole 
every night with the help of crontab(1,5)1 . You are also asked to develop a small C program 
in order to use within your script for output creation purposes. 

Task A: Create an information file for each user defined on the system including the following 
fields:  
1. Date (Day on which the script runs) 
2. User real name, User ID, 
3. Group name and total number of group members, 
4. Total login time in minutes for the day, 
5. Number of  e-mails remaining in user’s inbox, 
6. Total disk space used by user’s home directory. 

This file should be created following a text template including the above fields. The text part of the 
template should be made changeable. 

Task B: Compress using tar(1) files in defined directories within the script and Back-up them 
under a given destination directory also defined in the script.  

Task C: For each user Find files with a given extention under the users’ home directory and Send 
the output list as an e-mail to the admin’s e-mail address. 

C Program: You have to write a simple program in order to use it in your script to create output. 
This program will append a source file (e.g. an information file for a specific user) to the end of a 
destination file (e.g. the total  information for all the users). The name of the destination file will 
be given to the script as an argument. The usage of this program should be thougth with UNIX 
input/output redirection. 

Unless clearly specified, shell commands takes their input from the keyboard and directs their 
output to the screen. The ">" operator specifies to the shell that the output of a command is to be 
redirected to a file following the ">" sign. (Similarly, the "<" operator tells the shell that the input 
is to be taken from the files following the "<" sign.) Additionally, there is another feature of UNIX 
that allows the user to specify successive file redirections. Called pipe, this feature allows the 
redirection of the output of a program to the input of another. 

 

REFERENCES 

1. Unix’s on-line manual system which is accessed by command man(1), 

2. Using UNIX (CS Library No=122), 

3. Advanced Unix Programming (CS Library No=139,151), 

4. http://www.linux.org.tr 

5. http://www.google.com 

6. http://www.penguen.net 

 

Please read also the following manuals: cut(1), sed(1), awk(1), grep(1), mail(1), bash(1), 
for(1),  if(1),  diff(1),  netstat(8),  md5sum(1),  let(1),  expr(1), last(1) 

 

NOTES 

1. You are asked to give your Makefile with your program. 

                                            
1 Numbers in paranthesis indicates that the manual pages section. 



BIL235 Experiment V 
2. Backup files must include their creation date. 

3. In Job C more than one file extention should be possible. 

4. You are asked to follow announcements made to “bil235 discussion list”. If you are not 
subscribed yet, please subscribe to it by sending an e-mail to: 
 majordomo@cs.hacettepe.edu.tr 

with a message body of 

“subscribe bil235”. 

5. Your report and program must be submitted at the same time. 

6. Your report must include your source codes and should be based on a special template 
given at: 
http://www.penguen.net/turkce/belgeler/rapor.pdf . 

7. Office hours will be held on Tuesday’s and Friday’s. You can also send e-mails to 
kerem@linux.org.tr for your additional questions 

 

Good Luck 


	AIM
	BACKGROUND
	OBJECT
	REFERENCES
	NOTES

